Degree bounds for Hopf actions on Artin–Schelter regular algebras

نویسندگان

چکیده

We study semisimple Hopf algebra actions on Artin–Schelter regular algebras and prove several upper bounds the degrees of minimal generators invariant subring, syzygies modules over subring. These results are analogues for group commutative polynomial rings proved by Noether, Fogarty, Fleischmann, Derksen, Sidman, Chardin, Symonds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

Coherent Unit Actions on Regular Operads and Hopf Algebras

J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the generators of th...

متن کامل

Actions of Hopf algebras on noncommutative algebras

Often A is called H-module algebra. We refer reader to [11, 6] for the basic information concerning Hopf algebras and their actions on associative algebras. Definition 1.2 The invariants of H in A is the set AH of those a ∈ A, that ha = ε(h)a for each h ∈ H. Straightforward computations show, that AH is subalgebra of A. The notion of action of Hopf algebra on associative algebra generalize the ...

متن کامل

notes on regular multiplier hopf algebras

in this paper, we associate canonically a precyclic mod- ule to a regular multiplier hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

Actions of Hopf algebras ∗

An action of a finite dimensional Hopf algebra H on a noncommutative associative algebra A is considered. Properties of A , the subalgebra of invariants in A, are studied. It is proved that if A is integral over Z(A), the centre of an algebra A, then A is integral over Z(A) H , the subalgebra of invariants in Z(A), for each of three cases: 1. the coradical H0 is cocommutative and char k = p > 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108197